Preview

Pomiculture and small fruits culture in Russia

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Molecular methods in garden strawberry breeding for resistance to powdery mildew (Review)

https://doi.org/10.31676/2073-4948-2025-83-7-17

Abstract

The development of garden strawberry cultivars with high resistance to fungal pathogens constitutes a multifaceted challenge due to a combination of factors, including the high susceptibility of most genotypes, the lack of pronounced sources of natural genetic resistance, and the polygenic nature of resistance mechanisms. These characteristics limit the effi cacy of traditional breeding methods, thereby underscoring the necessity of implementing advanced molecular genetic approaches. DNA markers in breeding serve as a key tool for the identifi cation and selection of monogenic sources of resistance to powdery mildew. Particular attention deserves the MLO (Mildew Resistance Locus O), which infl uences plant susceptibility to the pathogen, playing a crucial role in the formation of strawberry resistance to Podosphaera aphanis. Scientifi c fi ndings demonstrate that employing diagnostic DNA markers IB535110 and IB533828, associated with the QTL 08 To-f, enables the eff ective screening of various garden strawberry genotypes for the presence of powdery mildew resistance. A comprehensive understanding of the genetic determinants of plant immunity is crucial for the development of targeted genetic interventions to achieve broad-spectrum disease resistance. The strategies may include both traditional breeding methods and modern molecular-genetic approaches, such as CRISPR-Cas9. This combination opens new perspectives for creating strawberry cultivars that can eff ectively withstand the pathogen across diverse cultivation conditions. Overall, the integration of advanced molecular-genetic methods into traditional breeding schemes can signifi cantly enhance the effi ciency of strawberry improvement. Utilizing markers for breeding resistance to powdery mildew and developing strategies for managing polygenic traits contribute to the creation of cultivars resilient against various pathogens. Consequently, the integration of innovative research into breeding practice holds promise for the sustainable development of horticulture and increased economic effi ciency in the commercial production of strawberry planting material.

About the Authors

M. S. Donesevich
Federal Horticultural Center for Breeding, Agrotechnology and Nursery
Russian Federation

Moscow



S. E. Golovin
Federal Horticultural Center for Breeding, Agrotechnology and Nursery
Russian Federation

Moscow



N. V. Andronova
Federal Horticultural Center for Breeding, Agrotechnology and Nursery
Russian Federation

Moscow



Yu. V. Afanasyeva
Federal Horticultural Center for Breeding, Agrotechnology and Nursery
Russian Federation

Mocow



E. V. Tarasova
Federal Horticultural Center for Breeding, Agrotechnology and Nursery
Russian Federation

Moscow



References

1. Храбров И. Э., Антонова О. Ю., Шаповалов М. И., Семёнова Л. Г. Устойчивость земляники к основным грибным фитопатогенам: R-гены и их ДНК-маркеры, Биотехнология и селекция растений. 2019;2(3):30-40. DOI: 10.30901/2658-6266-2019-3-o3.

2. Стольникова Н. П., Колесникова А. В. Оценка устойчивости земляники садовой к земляничному клещу, белой и бурой пятнистостям листьев, мучнистой росе. Сибирское садоводство ХХI века - вектор развития: Сборник материалов Всероссийской научно-практической конференции, посвященной 300-летию РАН и 90-летию создания НИИ садоводства Сибири имени М. А. Лисавенко. Барнаул: ООО Азбука, 2023, 139-144.

3. Berrie A., Xu X. Developing biopesticide-based programmes for managing powdery mildew in protected strawberries in the UK, Crop Protection. 2021;149:105766. DOI: 10.1016/j.cropro.2021.105766.

4. Sombardier A., Dufour M. C., Blancard D. and Corio-Costet M. F. Sensitivity of Podosphaera aphanis isolates to DMI fungicides: Distribution and reduced cross-sensitivity, Pest Management Science. 2010;66:35-43. DOI: 10.1002/ps.1827.

5. Rehman A., Davik J., Karisto P., Kaseva J., Karhu S., Rantanen M., Strandén I. A major QTL region associated with powdery mildew resistance in leaves and fruits of the reconstructed garden strawberry, Theoretical and Applied Genetics. 2025;l(138):93. DOI: 10.1007/s00122-025-04871-6.

6. Palloix A., Ayme V., Moury B. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence, and consequences for breeding strategies, The New phytologist. 2009;183:190-199. DOI: 10.1111/j.1469-8137.2009.02827.x.

7. Cockerton H. M., Karlström A., Johnson A. W., Li B., Stavridou E., Hopson K. J. et al. Genomic informed breeding strategies for strawberry yield and fruit quality traits, Frontiers in Plant Science. 2021;12:724847. DOI: 10.3389/fpls.2021.724847.

8. Лыжин А. С., Лукъянчук И. В. Использование ДНК-маркеров в селекции земляники садовой на устойчивость к патогенам (Sphaerotheca macularis, Colletotrichum acutatum, Phytophthora fragariae var. fragariae), Современное садоводство. 2023;4:12-22. DOI: 10.52415/23126701_2023_0402.

9. Келдибекова М. А., Зубкова М. И. Анализ сортов земляники садовой (Fragaria ananassa Duch.) по генам Rca2 и Rpf1 с применением ДНК-маркеров, Таврический вестник аграрной науки. 2023;3(35):103-109. DOI: 10.5281/zenodo.10135427.

10. Чекушкина Т. Н., Барсукова Е. Н. Применение методов биотехнологии в селекции земляники садовой (обзор), Аграрная Россия. 2022;12:12-18. DOI: 10.30906/1999-5636-2022-12-12-18.

11. Lindhout P. The perspectives of polygenic resistance in breeding for durable disease resistance, Euphytica. 2002;124:217-226. DOI: 10.1023/A:1015686601404.

12. Радченко Е. Е., Абдуллаев Р. А., Анисимова И. Н. Генетическое разнообразие зерновых культур по устойчивости к мучнистой росе, Экологическая генетика. 2020;18(1):59-78. DOI: 10.17816/ecogen14530.

13. Han G., Xing L., Gu T. et al. Molecular identifi cation of a Pm4 allele conferring powdery mildew resistance in durum wheat DR88, BMC plant biology. 2024;24(1):1169. DOI: 10.1186/s12870-024-05884-x.

14. Palmer M. G., Holmes G. J. Characterization of strawberry host plant resistance to powdery mildew caused by Podosphaera aphanis, Plant Health Prog. 2022;23(1):82-86. DOI: 10.1094/PHP-12-20-0107-RS.

15. Pincot D. D. A., Feldmann M. J., Hardigan M. A., Vachev M. V., Henry P. M., Gordon T. R., et al. Novel Fusarium wilt resistance genes uncovered in natural and cultivated strawberry populations are found on three non-homoeologous chromosomes, Theoretical and applied genetics. 2022;135:2121-2145. DOI: 10.1007/s00122-022-04102-2.

16. Jiménez N. P., Feldmann M. J., Famula R. A., Pincot D. D. A., Bjornson M., Cole G. S., et al. Harnessing underutilized gene bank diversity and genomic prediction of cross usefulness to enhance resistance to Phytophthora cactorum in strawberry, The plant genome. 2023;16(1):e20275. DOI: 10.1002/tpg2.20275.

17. Sargent D. J., Buti M., Šurbanovski N., Brurberg M. B., Alsheikh M., Kent M. P. et al. Identifi cation of QTLs for powdery mildew (Podosphaera aphanis; syn. Sphaerotheca macularis f. Sp. Fragariae) susceptibility in cultivated strawberry (Fragaria×ananassa), PloS One. 2019;14:e0222829. DOI: 10.1371/journal.pone.0222829.

18. Tapia R., Osorio L. F., Verma S., Lee S., Whitaker V. M. Genome-wide prediction of powdery mildew resistance in the octoploid strawberry, ISHS Acta Horticulturae. 2021;1309:101-106. DOI: 10.17660/ActaHortic.2021.1309.16.

19. Cockerton H. M., Vickerstaff R. J., Karlström A., Wilson F., Sobczyk M., He J. Q., Sargent D. J., Passey A. J., McLeary K. J., Pakozdi K., Harrison N., Lumbreras-Martinez M., Antanaviciute L., Simpson D. W., Harrison R. J. Identifi cation of powdery mildew resistance QTL in strawberry (Fragaria × ananassa), Theoretical and applied genetics. 2018;131(9):1995-2007. DOI: 10.1007/s00122-018-3128-0.

20. Koishihara H., Enoki H., Muramatsu M., Nishimura S., Susumu Y. U. I., Honjo M. Marker associated with powdery mildew resistance in plant of genus Fragaria and use thereof. U.S. Patent No. 10,724,093. Washington, DC: U.S. Patent and Trademark Offi ce. 2020.

21. Лыжин А. С., Лукъянчук И. В. Изучение генетической коллекции земляники (Fragaria L.) по устойчивости к мучнистой росе, Вавиловский журнал генетики и селекции. 2024;28(2):166-174. DOI: 10.18699/vjgb-24-19.

22. Худякова А. В., Маркова М. Г. Скрининг коллекции земляники садовой на наличие локусов резистентности Rca2 и 08 To-f, Аграрная наука Евро-Северо-Востока. 2025;26(3):546-554. DOI: 10.30766/2072-9081.2025.26.3.546-554.

23. Lynn S. C., Dunwell J. M., Whitehouse A. B. and Cockerton H.M. Genetic loci associated with tissue-specifi c resistance to powdery mildew in octoploid strawberry (Fragaria×ananassa), Frontiers in plant science. 2024;15:1376061. DOI: 10.3389/fpls.2024.1376061.

24. Лыжин А. С., Лукъянчук И. В. Молекулярный скрининг отборных форм земляники (Fragaria×ananassa Duch.) по устойчивости к мучнистой росе (локус 08 To-f), Субтропическое и декоративное садоводство. 2024;88:122-132. DOI: 10.31360/2225-3068-2024-88-122-132.

25. Kennedy C., Osorio L. F., Peres N. A., Whitaker V. M. Additive genetic eff ects for resistance to foliar powdery mildew in strawberry revealed through divergent selection, Journal of the American Society for Horticultural Science. 2014;139(3):310-316. DOI: 10.21273/JASHS.139.3.310.

26. Feng J., Cheng Y., Zheng C. Expression patterns of octoploid strawberry TGA genes reveal a potential role in response to Podosphaera aphanis infection, Plant Biotechnology Reports. 2020;14:55-67. DOI: 10.1007/s11816-019-00582-9.

27. Akter F., Wu S., Islam M.S., Kyaw H., Yang J., Li M., Fu Y., Wu J. An Effi cient Agrobacterium-Mediated Genetic Transformation System for Gene Editing in Strawberry (Fragaria×ananassa), Plants. 2024;13(5):563. DOI: 10.3390/plants13050563.

28. Rajaraman J., Douchkov D., Hensel G., Stefanato F. L., Gordon A., Ereful N., et al. An LRR/Malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat, Frontiers in Plant Science. 2016;7:1836. DOI: 10.3389/fpls.2016.01836.

29. Chen C., Ji Y. Q., Leng P., Ahmtijiang Liu J. & Liu Y. G. Research progress on physiological, biochemical and molecular mechanisms of postharvest fruit in response to pathogen infection, Storage and Process. 2021;21:129-135. DOI: 10.3969/j.issn.1009-6221.2021.11.019.

30. Duan W. et al. Combined transcriptome and metabolome analysis of strawberry fruits in response to powdery mildew infection, Agronomy Journal. 2022;114(2):1027-1039. DOI: 10.1002/agj2.21026.

31. Tapia R., Abd-Elrahman A., Osorio L., Whitaker V. M., Lee S. Combining canopy refl ectance spectrometry and genome-wide prediction to increase response to selection for powdery mildew resistance in cultivated strawberry, Journal of Experimental Botany. 2022;73(15):5322-5335. DOI: 10.1093/jxb/erac136.

32. Palloix A., Ayme V., Moury B. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence, and consequences for breeding strategies, The New phytologist. 2009;183:190-199. DOI: 10.1111/j.1469-8137.2009.02827.x.


Review

For citations:


Donesevich M.S., Golovin S.E., Andronova N.V., Afanasyeva Yu.V., Tarasova E.V. Molecular methods in garden strawberry breeding for resistance to powdery mildew (Review). Pomiculture and small fruits culture in Russia. 2025;83:7-17. (In Russ.) https://doi.org/10.31676/2073-4948-2025-83-7-17

Views: 20


ISSN 2073-4948 (Print)