Role of rhizospheric and endophytic bacteria in enhancing plant resistance to soil heavy metal contamination (Review)
https://doi.org/10.31676/2073-4948-2025-83-130-142
Abstract
This article presents a review of scientifi c literature published over the past fi ve years in leading Russian and foreign journals concerning heavy metal (HM) contamination in agricultural systems. The use of advanced molecular methods for elucidating interaction mechanisms between plant-associated microorganisms and plants exposed to HM stress is discussed. In addition, the approaches of microbiome engineering and synthetic biology to reducing HM toxicity through HM-resistant strains and using a combination of rhizospheric and endophytic microorganisms are analyzed. The conducted review has revealed that environmentally sustainable biological methods, specifi cally those involving rhizospheric and endophytic bacteria capable of diminishing HM concentration and toxicity, represent a prominent and rapidly evolving direction in reducing plant HM accumulation. Metal-tolerant microorganisms employ diverse resistance mechanisms, including redox transformations, ion exchange, methylation, complex formation, precipitation, sequestration, and the production of biosurfactants, siderophores, phytohormones, as well as extracellular precipitation and valence alteration. Prior fi eld testing of promising microbial strains is essential for specifi c crops, cultivars, or rootstocks under defi ned soil and climatic conditions, due to the variability in potential HM detoxifi cation pathways. The conclusion is made that the use of bacteria which combine plant growth-promoting traits with the ability to detoxify HMs in the rhizosphere or plant endosphere represents a cost-eff ective and promising approach for eco-friendly agricultural biotechnologies. Optimizing both rhizospheric and endophytic bacterial communities of crops based on microbiome engineering, synthetic biology, and omics technologies appears a prospective and effi cient strategy to mitigate the risks of HM contamination in agricultural products.
Keywords
About the Authors
V. V. BobkovaRussian Federation
Moscow
S. N. Konovalov
Russian Federation
Moscow
References
1. Ngalimat M. S., Yahaya R. S. R., Baharudin M. M. A. A., Yaminudin S. M., Karim M., Ahmad S. A. et al. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens, Microorganisms. 2021;9(3):614. DOI: 10.3390/microorganisms9030614.
2. Grover M., Bodhankar S., Sharma A., Sharma P., Singh J., Nain, L. PGPR mediated alterations in root traits: way toward sustainable crop production, Front. Sustain. Food Syst. 2021;4:618230. DOI: 10.3389/fsufs.2020.618230.
3. Joshi S., Gangola S., Bhandari G., Bhandari N. S., Nainwal D., Rani A., Malik S., Slama P. Rhizospheric bacteria: the key to sustainable heavy metal detoxifi cation strategies, Front. Microbiol. 2023;14:1229828. DOI: 10.3389/fmicb.2023.1229828.
4. Pande V., Pandey S. C., Sati D., Bhatt P., Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem, Front. Microbiol. 2022;13:824084. DOI: 10.3389/fmicb.2022.824084.
5. Gangola S., Bhatt P., Kumar A. J., Bhandari G., Joshi S., Punetha A. et al. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment, Chemosphere. 2022;296:133916. DOI: 10.1016/j.chemosphere.2022.133916.
6. Hussain S., Khan, M., Sheikh T. M. M., Mumtaz M. Z., Chohan T. A., Shamim, S. et al. Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight, Front. Microbiol. 2022;13:900740. DOI: 10.3389/fmicb.2022.900740.
7. Yaashikaa P. R., Kumar P. S., Saravanan A., Vo D. V. N. Advances in biosorbents for removal of environmental pollutants: a review on pretreatment, removal mechanism and future outlook. J. Hazard. Mater. 2021;420:126596. DOI: 10.1016/j.jhazmat.2021.126596.
8. Wang Y., Narayanan M., Shi X., Chen X., Li Z., Natarajan D., Ma Y. Plant growth promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms, Front. Microbiol. 2022;13:966226. DOI: 10.3389/fmicb.2022.966226.
9. Yang Z., Yang F., Liu J. L., Wu H. T., Yang H., Shi Y. et al. Heavy metal transporters: functional mechanisms, regulation, and application in phytoremediation, Sci. Total Environ. 2022;809:151099. DOI: 10.1016/j.scitotenv.2021.151099.
10. Szopa D., Mielczarek M., Skrzypczak D., Izydorczyk G., Mikula K., Chojnacka K. et al. Encapsulation effi ciency and survival of plant growth promoting microorganisms in an alginate-based matrix-A systematic review and protocol for a practical approach, Ind. Crop. Prod. 2022;181:114846. DOI: 10.1016/j.indcrop.2022.114846.
11. Su C., Sun X. J., Mu Y. Z., Li P. W., Li J., Fan P. S. et al. Multilayer calcium alginate beads containing diatom biosilica and Bacillus subtilis as microecologics for sewage treatment, Carbohydr. Polym. 2021;256:117603. DOI: 10.1016/j. carbpol.2020.117603.
12. Gangola S., Joshi S., Bhandari G., Bhatt P., Kumar S., Bhandari N. S. et al. Remediation of heavy metals by rhizospheric bacteria and their mechanism of detoxifi cation, In Advanced microbial technology for sustainable agriculture and environment, eds S. Gangola, S. Kumar, S. Joshi, P. Bhatt (Cambridge, MA: Academic Press). 2023;31-46. DOI: 10.1016/B978-0-323-95090-9.00005-4.
13. Afridi M. S., Javed M. A., Ali S., De Medeiros F. H. V., Ali B., Salam A., Sumaira, Marc R. A., Alkhalifah D. H. M., Selim S., Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions, Front. PlantSci. 2022;13:899464. DOI: 10.3389/fpls.2022.899464.
14. Плеханова И. О., Куликов В. О., Шабаев В. П. Влияние ризосферных бактерий на фракционный состав соединений тяжелых металлов в системе почва-растение, Почвоведение. 2022;9:1179-1186. DOI: 10.31857/S0032180X22090143.
15. Sharma P. Effi ciency of bacteria and bacterial assisted phytoremediation of heavy metals: an update, Bioresour. Technol. 2021;328:124835. DOI: 10.1016/j.biortech.2021.124835.
16. Курамшина З. М., Хайруллин Р. М. Повышение устойчивости растений к засухе с помощью эндофитных штаммов Bacillus subtilis, Физиология растений, 2023;70(3):259-268. DOI: 10.31857/S0015330322600760.
17. Franco-Franklin V., Moreno-Riascos S., Ghneim-Herrera T. Are Endophytic Bacteria an Option for Increasing Heavy Metal Tolerance of Plants? A Meta-Analysis of the Eff ect Size. Front. Environ. Sci. 2021;8:603668. DOI: 10.3389/fenvs.2020.603668.
18. Dandu A., Ayyaraju M., Gurrala A., Hari Babu R. et al. Endophytic Microbial Remediation of Heavy Metals: An Overview, Adv Biotech & Micro. 2023;17(2):555960. DOI: 10.19080/AIBM.2023.17.555960.
19. Курамшина З. М., Смирнова Ю. В., Хайруллин Р. М. Повышение толерантности культурных растений, инокулированных эндофитными штамми Bacillus subtilis, к действию тяжелых металлов. Современные проблемы науки и образования. 2016:6;545.
20. Tiwari P., Bae H. Plant Microbiome and Heavy Metal Stress. Encyclopedia. Available online: https://encyclopedia.pub/entry/43004 (accessed on 15 December 2025).
21. Thai T. D., Lim W., Na D. Synthetic bacteria for the detection and bioremediation of heavy metals, Front Bioeng Biotechnol. 2023 Apr 13;11:1178680. DOI: 10.3389/fbioe.20.
Review
For citations:
Bobkova V.V., Konovalov S.N. Role of rhizospheric and endophytic bacteria in enhancing plant resistance to soil heavy metal contamination (Review). Pomiculture and small fruits culture in Russia. 2025;83:130-142. (In Russ.) https://doi.org/10.31676/2073-4948-2025-83-130-142
























