Effet du ni sur la productivité végétative et générative des plants de fraises de jardin (Fragaria × Ananassa Duch.)
https://doi.org/10.31676/2073-4948-2020-61-117-127
Abstract
In a vegetative experiment, the effect of two concentrations of Ni in the soil of 80 and 240 mg Ni / kg on the vegetative and generative productivity of plants of three varieties of strawberries Honeoye, Troitskaya, Red Gontlet was studied. Ni soil contamination had a significant impact on the vegetative and generative productivity of strawberry plants. The degree and direction of this effect was largely dependent on the variety. When the Ni content in the soil was 80 mg / kg in plants of strawberry varieties Honeoye and Red Gauntlet, there was a tendency to an increase in leaf mass, most of all in the Honeoye variety – by 16.6 % compared to an uncontaminated fertilized background. When the Ni concentration in the soil was 240 mg / kg in Honeoye plants, the leaf mass decreased by 19.0 % relative to the uncontaminated background, while in the Troitskaya and Red Gauntlet plants, the leaf mass increased, to a maximum, in Red Gontlet plants by 57.9 %. In plants of the strawberries varieties Honeoye mass of strawberries runners when soil is polluted, Ni was decreased to the greatest extent when the content of Ni in soil is 80 mg/kg – 23.3 % relative to the background values, the varieties Troitskaya and Red Gauntlet mass of strawberries runners, it became higher, especially when the content of Ni in soil is 240 mg/kg – 24.5 % and 42.5 % of the relatively polluted background, respectively. In plants of the Honeoye variety, the number of rosettes with Ni soil contamination tended to decrease relative to the background value (maximum, by 27.0 % when the Ni content in the soil is 80 mg / kg), in the Troitskaya variety – to increase (to the greatest extent, when the Ni content in the soil is 240 mg/kg – by 220 %). In plants of the Red Gauntlet variety, the number of rosettes per plant at each of the studied levels of soil contamination with Nickel tended to decrease (by a maximum of 11.8 % with a Ni content of 80 mg/kg in the soil). The number of peduncle in plants of strawberry varieties Honeoye and Troitskaya on polluted soil tended to decrease in comparison with the background. In plants, varieties of Red Gauntlet for this parameter was an opposite trend in the contamination of soil Ni number of peduncle per plant increased relatively polluted background (maximum 60.0 % when the contamination level of 240 mg/kg). The mass of berries on one plant of Red Gauntlet strawberry with Ni soil contamination at the level of 240 mg / kg statistically significantly increased by 38.3 % relative to the non-polluted background. In plants of the Honey and Troitsky varieties, the berries mass on one plant naturally decreased compared to the non-polluted background (by 10.2 % at a Ni content of 240 mg/kg and by 44.0 % at a Ni content of 80 mg/kg, respectively). When the soil was contaminated with Ni 240 mg / kg of Red Gauntlet strawberry plants, the number of berries per plant increased by 45.3 % relative to the non-polluted background. In plants of the Honeoye and Troitskaya varieties, the number of berries per plant decreased in comparison with the non-polluted background, to the greatest extent, by 30.9 % at a content of Ni 240 mg/kg and by 29.9 % at a content of Ni 80 mg/kg, respectively.
About the Authors
V. V. BobkovaRussian Federation
Moscow
S. N. Konovalov
Russian Federation
Moscow
References
1. Бобкова В. В., Коновалов С. Н. Агроэкологические параметры аккумуляции никеля растениями земляники садовой в интенсивных технологиях возделывания на дерново-подзолистых почвах/ Мат. 52-й Международной науч. конф., посв.200-летию со дня рождения Я. А. Линовского «Агроэкологические и экономические аспекты применения средств химизации в условиях биологизации и экологизации сельскохозяйственного производства», М.. 2018. – С. 240-242.
2. Бобкова В. В., Коновалов С. Н. Агрофизические свойства дерново-подзолистой почвы и доступность никеля растениям земляники// Материалы Всероссийской научной конференции «Химическое и биологическое загрязнение почв»/ Товарищество научных изданий КМК. – Пущино: 2018. – С. 160-162.
3. Леоничева Е. В. Ветрова О. А., Мотылёва С. М., Мертвищева М. Е. Сортовые особенности накопления свинца и никеля растениями земляники садовой в условиях техногенного загрязнения / Вестник Орёл ГАУ, 2012, № 3 (36). – С. 76-79.
4. Леонтьева Л. И., Корнилов Б. Б., Прудников П. С., Леоничева Е. В. Накопление свинца и никеля в органах и тканях малины (Rubus idaeus L.) при разном уровне минерального питания/ Современное садоводство, 2014, №4. – С. 71-81.
5. Jamali B., Eshghi S., Taffazoli E. Vegetative growth, yield, fruit quality and fruit and leaf composition of strawberry cv. ‘Pajaro’ as influenced by salicylic acid and nickel sprays / J. of plant nutrition, 36 (7), 2013. – P. 1043-1055.
6. Серёгин И. В., Кожевникова А. Д. Физиологическая роль никеля и его токсическое действие на высшие растения/ Физиология растений, 2006, том 53, №2 – C. 285-308.
7. Андреева И. В., Говорина В. В., Виноградова С. Б., Ягодин Б. А. Никель в растениях. Агрохимия, 2001, №3. – С. 82-94.
8. Bhalerao S. A., Sharma A. S., and Poojari A. C. Toxicity of Nickel in Plants/ Inter. J. Pure App. Biosci, 2015, v. 3. – P. 345-355.
9. El-Enany A.E., Atia M. A., Abd-Alla M. H., Rmadan T. Response of bean seedlings to nickel toxicity: role of calcium/ Pak. J. Bio. Sci., 2000, v. 3. – P. 1447-1452.
10. Shafeeq A., Butt Z.A., Muhammad S. Response of nickel pollution on physiological and biochemical attributes of wheat (Triticum aestivum L.) Var. Bhakkar-02. Pak./ J. Bot., 2012, v. 44. – P. 111-116.
11. Dubey D., and Panday A. Effect of Nickel (Ni) on chlorophyll, Lipid peroxidation and Antioxidant enzyme activities in black gram (Vigna mungo) leaves/ Int. J. Sci. Nature, 2011, v. 2. – P. 395-401.
12. Satish A. Bhalerao*, Amit S. Sharma and Anukthi C. Poojari Toxicity of Nickel in Plants/ Int. J. Pure App. Biosci., 2015: 3 (2). – P. 345-355.
13. Singh K. Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L./ J. Environ. Bio., 2011, v.32. – P. 391-394.
14. Gajewska E., Sklodowska M., Slaba M., Mazur J. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots/ Bio. Plant., 2006, v. 50. – P. 653-659.
15. Бобкова В. В., Коновалов С. Н. Влияние Ni на содержание хлорофилла в листьях и обеспеченность элементами питания земляники садовой //Плодоводство и ягодоводство России. 2019;57(1):16-24.
16. Sai Kachout S., Ben Mansoura A., Ennajah A., Leclerc J.C., Ouerghi Z., Karray Bouraoui N. Effects of Metal Toxicity on Growth and Pigment Contents of Annual Halophyte (A. hortensis and A. rosea)/ Int. J. Environ. Res., 2015, v. 9. – P. 613-620.
17. Singh G., Agnihotri R.K., Reshma R.S., Ahmad M. Effect of lead and nickel toxicity on chlorophyll and proline content of Urd (Vigna mungo L.) seedlings/ Inter. J. Plant Physiol. Biochem., 2012, v. 4. – P. 136-141.
18. Emamverdian A., Ding Y., Mokhberdoran F., Xie Y., Heavy metal stress and some mechanisms of Plant Defense Response/ The Sci. World J., 2015. – P. 18.
19. Hussain M. B., Ali S., Azam A., Hina S., Farooq M. A., Ali B., Bharwana S. A. and Gill M. B., 2013. Morphological, physiological and biochemical responses of plants to nickel stress: A review. Afr. J. Agri. Res. v.8: – P. 1596-1602.
20. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур//Под ред. Е. Н. Седова и Т. П. Огольцовой. Орёл. ВНИИСПК, 1999. – С. 608.
Review
For citations:
Bobkova V.V., Konovalov S.N. Effet du ni sur la productivité végétative et générative des plants de fraises de jardin (Fragaria × Ananassa Duch.). Pomiculture and small fruits culture in Russia. 2020;61:117-127. (In Russ.) https://doi.org/10.31676/2073-4948-2020-61-117-127