Preview

Pomiculture and small fruits culture in Russia

Advanced search

Regularities of accumulation of heavy metals by strawberry (Fragaria×Ananassa Duch.) plants from soddy-podzoly soil using adsorbents based on mineral and polymeric substances

https://doi.org/10.31676/2073-4948-2020-62-152-164

Abstract

In vegetative experiment has been studied the infl uence of adsorbents on the basis of mineral and polymer substrates Bentonite, Arpolit, Supradit, Agronit on the accumulation of heavy metals (HM) of strawberry plants plant variety Troitskaya in the artificial contamination of sod-podzolic soil at the level MAC (maximum allowable concentration) of total content of TM: Cd 2 mg/kg, Cr 100 mg/kg (MAC missing), Pb 130 mg/kg, Zn 220 mg/ kg. It was found that the use of adsorbents based on mineral and polymer substrates helps to reduce the content of mobile forms of Cr, Cd, Pb in the soil. Their content is reduced to the greatest extent when the adsorbents Supradit M are added to the soil (by 78.5 % for Cd and 40.1 % for Pb, compared with the control) and Agronite (by 79.0 % for Cd and 48.9 % for Pb, compared with the control). For mobile Cr, the downward trend in soil content was statistically unreliable. The content of mobile Zn in the variants with all adsorbents, on the contrary, increased in comparison with the contaminated control, to the greatest extent when the adsorbent Supradit M was added – by 26.1 %, compared with the control. The use of adsorbents led to a decrease in the content of Cd and Pb in the roots of strawberry plants. The greatest decrease in their content in the roots was when adding adsorbents Supradit M (65.2 % for cadmium and 76.8 % for lead, compared with the control) and Agronite (65.7 % for cadmium and 78.2 % for lead, compared with the control). The content of Zn in the roots in the variants with the introduction of adsorbents, except for Bentonite, increased in comparison with the contaminated control, to the greatest extent with the introduction of the adsorbent Supradit M – by 45.2 %. The content of Cr in the roots when using all adsorbents, except Agronite, also tended to increase, to the greatest extent when applying Arpolite – by 105.9 %, compared with the control. When applying the adsorbents Supradit M and Agronit to the soil, the content of Cd in the leaves decreased: when applying the adsorbent Supradit M by 52.9 %, Agronit – by 41.2 %, compared to the control. The content of Zn, Cr, and Pb in the leaves in the variants with adsorbents increased in comparison with the contaminated control, to the greatest extent when adding the adsorbent Arpolite: by 63.7 % – for Zn, by 71.2 % – for Cr, and by 46.3 % – for Pb. When using this adsorbent, the content of Cd in the leaves also increased – by 105.9 % higher than the contaminated control. The content of Cd, Cr, Pb, Zn in the berries of strawberry when using adsorbents less than in the roots and leaves, depended on the content of the corresponding heavy metals in the soil and was not statistically significant. When adding the adsorbents Supradit M and Agronit to the soil, the content of Cd in berries tended to decrease: when using the adsorbent Supradit M – by 30.0 %, Agronit – by 40.0 %, compared with the control. When adding the adsorbent Arpolite to the soil, the Cd content in berries tended to increase by 30.0 %, Pb – by 111.8 % from the control. The Cr content in the berries in the variants with adsorbents increased in comparison with the contaminated control, to the greatest extent with the introduction of Bentonite adsorbent – by 180.0 %. For the content of Zn in berries, there was no pronounced natural tendency for adsorbents to act. The closest relationship between the content of TM in the organs of strawberry plants and the content of mobile forms of heavy metals in the soil was observed for roots and leaves. There was no such dependency for Cr. At the studied levels of mobile TM content in the soil, the barrier properties of strawberry plants play an important role in the accumulation of heavy metals. The translocation coefficients of heavy metals were higher in the experiment variants, in which a decrease in the content of mobile forms of TM in the soil was observed when adding adsorbents. For Cd in the variant using the adsorbents Supradit M and Agronit, the TM translocation coefficients were higher than the control value by 98.0 and 72.5 %, respectively. For Pb, the values of translocation coefficients increased with the use of these adsorbents, compared to the control, by 300 % and 350 %, respectively. With an increased content of mobile forms of TM in the soil in the variants with the introduction of adsorbents Supradit M and Agronit, the translocation coefficients for Zn, compared to the control, were lower by 33.3 % and 33.3 %, respectively.

About the Authors

V. V. Bobkova
All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery
Russian Federation
Moscow


S. N. Konovalov
All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery
Russian Federation
Moscow


References

1. Волкова Е. С. Технологические приёмы, обеспечивающие устойчивость агроценозов к тяжёлым металлам. Методические рекомендации: Органические системы удобрения на загрязненных почвах, 2008, 49 с.

2. Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. Heavy metal stress and some mechanisms of Plant Defense Response, Th e Sci. World J. 2015: p. 18.

3. Галиуллин Р. В., Галиуллина P. A. Фитоэкстракция тяжёлых металлов из загрязнённых почв, Агрохимия. 2003;3:77- 85.

4. Chauhan P., Mathur J. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil/ Environmental Science and Pollution Research: 2020;27:29954-29966. https://doi.org/10.1007/s11356-020-09233-x.

5. Dal Corso G., Fasani E., Manara A., Visioli G., Furini A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation, Int. J. Mol. Sci. 2019;20(14):3412. doi: 10.3390/ijms20143412.

6. Lone M. I., Zhen-li He, Stoffella P. J., Xiao-e Yang Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives, J. Zhejiang Univ. Sci. B. 2008;9(3):210- 220. doi: 10.1631/jzus.B0710633.

7. Бобкова В. В., Коновалов С. Н. К вопросу об эффективности методов прецизионной агроэкологии, Плодоводство и ягодоводство России, 2014;40(1):49-53.

8. Коновалов С. Н., Бобкова В. В. Влияние органических и минеральных удобрений на усвоение тяжёлых металлов из дерново-подзолистой почвы растениями яблони колонновидной: Отходы, причины их образования и перспективы использования: сб. науч. тр. по материалам Междунар. науч. экол. конф. Краснодар: КубГАУ, 2019: с. 250-253.

9. Mathew B. B., Jaishankar M., Biju V. G., Beeregowda K. N. Role of Bioadsorbents in Reducing Toxic Metals, Journal of Toxicology. 2016;12:1-13. https://doi.org/10.1155/2016/4369604/.

10. Plyatsuk L. D., Chernysh Y. Y., Ablieieva I. Y., Yakhnenko O. M., Bataltsev E. V., Balintova M., Hurets L. L. Remediation of Soil Contaminated with Heavy Metals, Journal of Engineering Sciences. 2019;6(1):H1-H8. DOI: 10.21272/jes.2019.6(1).h1

11. Stanisławska-Glubiak E., Korzeniowska J., Kocoń A. Eff ect of the Reclamation of Heavy Metal Contaminated Soil on Growth of Energy Willow, Pol. J. Environ. Stud. 2012;21(1):187-192.

12. Wuana R. A., Okieimen F. E., Imborvungu J. A. Removal of heavy metals from a contaminated soil using organic chelating acids, Int. J. Environ. Sci. Tech. 2010;7(3):485-496.

13. Небольсин А. Н., Небольсина З. П., Алексеев Ю. В., Яковлева Л. В. известкование почв, загрязнённых тяжёлыми металлами, Агрохимия. 2004;3:48-54.

14. Белоголова Г. А., Соколова М. Г., Пройдакова О. А. Влияние почвенных бактерий на поведение химических элементов в системе почва-растение, Агрохимия, 2011;9:28-76.

15. Гарипова С. Р. Перспективы использования эндофитных бактерий в биоремедиации почв агроэкосистем от пестицидов и других ксенобиотиков, Успехи современной биологии. 2014;1(34):35-47.

16. Васильева В. В., Попова О. В., Сидоренко Д. О., Ботвинко И. В. Биопрепарат для восстановления городских почв, загрязненных углеводородами и тяжёлыми металлами: бактерии или дрожжи?, Защита окружающей среды в нефтегазовом комплексе. 2014;7:24-28.

17. Mohammad Kashif Uddin. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chemical Engineering Journal. 2017;308:438- 462. https://doi.org/10.1016/j.cej.2016.09.029.

18. Pusz A. Infl uence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals, J. of Hazardous Materials. 2007;149(3):590-597. https://doi.org/10.1016/j.jhazmat.2007.06.115

19. Ветрова О. А., Мертвищева М. Е. Влияние цеолита на содержание тяжёлых металлов в почве при выращивании земляники в условиях техногенного загрязнения. Комплексное применение средств химизации в адаптивно-ландшафтном земледелии, М.: ВНИИА, 2010: с. 35-38.

20. Ponizovskii A. A., Tsadilas K. D., Dimoyanis D. D. The use of zeolite for the detoxification of lead-contaminated soils, Eurasian Soil Science. 2003;36(4):439-443.

21. Qiulong Hu, Wei-ai Zeng, Fan Li, Yanning Huang, Songsong Gu, Hailin Cai, Min Zeng, Qiang Li, Lin Tan. Eff ect of Nano Zeolite on the Transformation of Cadmium Speciation and Its Uptake by Tobacco in Cadmium-contaminated Soil, Open Chem. 2018;16:667-673.

22. Коновалов С. Н. Применение влагоудерживающих полимерных гидрогелей в качестве микроудобрения пролонгированного действия и детоксиканта ТМ на яблоне. Плодоводство и ягодоводство России, 2002;9:343-354.

23. Aabid H. Shalla, Zahid Yaseen, Mushtaq A. Bhat, Tauseef A. Rangreez, Masrat Maswal Recent review for removal of metal ions by hydrogels, Separation Science and Technology, Water Science & Technology. 2018;73(5): wst2015567. DOI: 10.1080/01496395.2018.1503307

24. Журбицкий З. И. Теория и практика вегетационного метода. М.: Наука, 1968, 266 с.

25. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур. Под ред. Е. Н. Седова и Т. П. Огольцовой. Орёл, ВНИИСПК, 1999, 608 с.


Review

For citations:


Bobkova V.V., Konovalov S.N. Regularities of accumulation of heavy metals by strawberry (Fragaria×Ananassa Duch.) plants from soddy-podzoly soil using adsorbents based on mineral and polymeric substances. Pomiculture and small fruits culture in Russia. 2020;62:152-164. (In Russ.) https://doi.org/10.31676/2073-4948-2020-62-152-164

Views: 423


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-4948 (Print)