Preview

Pomiculture and small fruits culture in Russia

Advanced search

Self-incompatibility of the subgenus Cerasus (Mill.) A.Gray (review)

https://doi.org/10.31676/2073-4948-2023-75-7-15

Abstract

The selection of pollinators when planting plantings in crop production and parental pairs during hybridization in breeding is closely related to the problem of self-incompatibility. The results of numerous studies show that self-incompatibility is realized through a variety of biological mechanisms and is aimed primarily at preventing inbreeding within a population. Self-incompatibility in many species is determined by one S-locus with many S-alleles. In this case, the S-haplotype combines male and female specificity determinants (S-determinants), and pollen recognition occurs due to a molecular allele-specific interaction between them. In representatives of the genus Prunus, self-incompatibility is controlled by the interaction of genes belonging to the S locus, the combination of variants of which forms a specific S haplotype. Molecular S-genotyping methods are based on S-RNase gene sequences, which allow the identification of S-alleles and the classification of varieties with respect to incompatibility groups. To date, 31 S-haplotypes have been identified in sour cherries and sweet cherries, and some of the haplotypes are identical to each other. In sour cherry, 12 functional S-haplotypes and 9 nonfunctional ones have been described. 6 S-haplotypes of sour cherry species have also been described. Mutations that occur not only in the S-RNase and SFB genes, but also in regions not associated with the S-locus can lead to disruption of the self-incompatibility mechanism. Studies on the identification of self-incompatibility alleles of representatives of the Cerasus subgenus were in many cases carried out on the species P. avium L. The formation of self-(in)compatibility of tetraploid genotypes of sour cherry is due to the presence of mutations in the S-locus genes, which lead to the appearance of non-functional S-haplotypes. Self-incompatibility of pollen in sour cherry occurs when one fully functional S-allele in the pollen corresponds to one functional S-haplotype in the pistil. Currently, the study of the mechanism of self-incompatibility continues, and genotyping of sour cherry and sweet cherry varieties is carried out at S-loci. DNA analysis data is promising for predicting the level of compatibility of varieties during pollination and fruit set during hybridization.

About the Author

V. V. Spivak
Federal Horticultural Research Center for Breeding, Agrotechnology and Nursery
Russian Federation

 Moscow 



References

1. Zhang D. et al. Molecular insights into self-incompatibility systems: from evolution to breeding, Plant Communications. 2023. DOI: 10.1016/j.xplc.2023.100719.

2. Igic B., Lande R., Kohn J. R. Loss of self-incompatibility and its evolutionary consequences. International Journal of Plant Sciences. 2008;169(1):93-104. DOI: 10.1086/523362.

3. Halasz J., Kodad O., Hegedűs A. Identification of a recently active Prunus‐specific non‐autonomous Mutator element with considerable genome shaping force. The Plant Journal. 2014:79(2):220-231. DOI: 10.1111/tpj.12551.

4. McCubbin A. G., Kao T. Molecular recognition and response in pollen and pistil interactions. Annual Review of Cell and Developmental Biology. 2000;16(1):333-364.

5. Takayama S., Isogai A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 2005;56:467-489. DOI: 10.1146/annurev.arplant.56.032604.144249.

6. Iwano M., Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. Current opinion in plant biology. 2012;15(1):78-83.DOI:10.1016/j.pbi.2011.09.003.

7. Bošković R., Tobutt K. R. Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica. 1996;90:245-250. DOI:10.1007/BF00023865.

8. Tao R. et al. Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. Journal of the American Society for Horticultural Science. 1999;124(3)224-233. DOI:10.21273/jashs.124.3.224.

9. Yamane H. et al. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P.bavium. Plant and Cell Physiology. 2003;44(7):764-769. https://doi.org/10.1093/pcp/pcg088.

10. Ikeda K. et al. Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sexual Plant Reproduction. 2005;17:289-296. DOI: 10.1007/s00497-004-0240-x.

11. Tao R., Iezzoni A. F. The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Scientia Horticulturae.2010;124(4)423-433. https://doi.org/10.1016/j.scienta.2010.01.025.

12. Капитонова М. А. и др. Основные подходы к контролируемой деградации белков в клетке. Молекулярная биология. 2021;55(4):543-561. DOI: 10.31857/S0026898421040066.

13. Wu J. et al. Molecular determinants and mechanisms of gametophytic self-incompatibility in fruit trees of Rosaceae. Critical Reviews in Plant Sciences. 2013;32(1):53-68. https://doi.org/10.1080/07352689.2012.715986.

14. De Cuyper B., Sonneveld T., Tobutt K. R. Determining self‐incompatibility genotypes in Belgian wild cherries. Molecular Ecology. 2005;14(4):945-955. https://doi.org/10.1111/j.1365-294X.2005.02460.x.

15. Vaughan S. P. et al. Characterisation of novel S-alleles from cherry (Prunus avium L.). Tree Genetics & Genomes. 2008;4:531-541. DOI: 10.1007/s11295-007-0129-6.

16. Hauck N. R. et al. Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics. 2006;172(2):1191- 1198. https://doi.org/10.1534/genetics.105.049395.

17. Herrero M., Rodrigo J., Wünsch A. Flowering, fruit set and development, Cherries: Botany, production and uses. Wallingford UK: CABI, 2017, 14-35. DOI: 10.1079/9781780648378.0014.

18. Sebolt A. M. et al. S-genotyping of cultivars and breeding selections of sour cherry (Prunus cerasus L.) in the Michigan State University sour cherry breeding program. Acta Horticulturae. 2017;1161:31-40. DOI: 10.17660/actahortic.2017.1161.5.

19. Lewis D., Crowe L. K. Structure of the incompatibility gene. Heredity. 1954;8(3):357-363.

20. Sonneveld T. et al. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-Box gene. The Plant Cell. 2005;17(1):37-51. https://doi.org/10.1105/tpc.104.026963.

21. Schuster M. Incompatible (S-) genotypes of sweet cherry cultivars (Prunus avium L.). Scientia Horticulturae. 2012;148:59-73. https://doi.org/10.1016/j.scienta.2012.09.012.

22. Calabrese F., Fenech L., Raimondo A. Kronio: una cultivar di ciliegio molto precoce e autocompatibile. 1984; 46 (5):27–30.

23. Wünsch A., Hormaza J. I. Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant, Sexual plant reproduction.2004;17(4):203-210. DOI: 10.1007/s00497-004-0234-8.

24. Cachi A. M., Wünsch A. S-genotyping of sweet cherry varieties from Spain and S-locus diversity in Europe. Euphytica. 2014;197:229-236. DOI: 10.1007/s10681-014-1061-0.

25. Marchese A. et al. A new self-compatibility haplotype in the sweet cherry Kronio, S5′, attributable to a pollen-part mutation in the SFB gene. Journal of experimental botany. 2007; 58(15-16):4347-4356. https://doi.org/10.1093/jxb/erm322.

26. Cachi A. M., Wünsch A. Characterization of self-compatibility in sweet cherry varieties by crossing experiments and molecular genetic analysis. Tree genetics & genomes. 2014;10(5):1205-1212. DOI: 10.1007/s11295-014-0754-9.

27. Cachi A. M., Wünsch A. Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.). Journal of experimental botany. 2011;62(6):1847-1856. https://doi.org/10.1093/jxb/erq374.

28. Cachi A. M. et al. Pollen tube growth in the self‐compatible sweet cherry genotype, Cristobalina, is slowed down after self‐pollination. Annals of applied biology. 2014;164(1):73-84. https://doi.org/10.1111/aab.12079.

29. Quero-García J. et al. Cherries: botany, production and uses. Cherries: botany, production and uses. CABI, 2017, 549 p. DOI :10.1079/9781780648378.0000.

30. Безлепкина Е. В., Гуляева А. А., Пикунова А. В. Аллельный полиморфизм гена cамонесовместимости у сортов черешни селекции ВНИИСПК. Вестник российской сельскохозяйственной науки. 2020;4:26-28. DOI: 10.30850/vrsn/2020/4/26-28.

31. Супрун И. И., Алёхина Е. М., Токмаков С. В. Использование молекулярно-генетического анализа и фенотипической оценки для определения совместимости сортов черешни при опылении. Садоводство и виноградарство. 2015;6:35-39.

32. Patzak J. et al. Molecular S-genotyping of sweet cherry (Prunus avium L.) genetic resources. Horticultural Science. 2019;46(3):146-152. https://doi.org/10.17221/245/2017-HORTSCI.

33. Patzak J. et al. Evaluation of S-incompatibility locus, genetic diversity and structure of sweet cherry (Prunus avium L.) genetic resources by molecular methods and phenotypic characteristics. The Journal of Horticultural Science and Biotechnology. 2020;95(1):84-92. https://doi.org/10.1080/14620316.2019.1647798.

34. Dervishi A. et al. Identification of self incompatibility genotypes in sweet cherry commercial cultivars. Poljoprivreda i Sumarstvo. 2022;68(3):83-91. DOI: 10.17707/AgricultForest.68.3.06.

35. Kivistik A. et al. Wild and rare self-incompatibility allele S17 found in 24 sweet cherry (Prunus avium l.) cultivars. Plant Molecular Biology Reporter. 2022;40(2):376-388. https://doi.org/10.1007/s11105-021-01327-1.


Review

For citations:


Spivak V.V. Self-incompatibility of the subgenus Cerasus (Mill.) A.Gray (review). Pomiculture and small fruits culture in Russia. 2023;75:7-15. (In Russ.) https://doi.org/10.31676/2073-4948-2023-75-7-15

Views: 288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-4948 (Print)